Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses.
نویسندگان
چکیده
Glutamate is the major excitatory neurotransmitter in the brain. The NMDA subtype of glutamate receptors (NMDAR) is known to mediate many physiological neural functions. However, excessive activation of NMDARs contributes to neuronal damage in various acute and chronic neurological disorders. To avoid unwanted adverse side effects, blockade of excessive NMDAR activity must therefore be achieved without affecting its physiological function. Memantine, an adamantane derivative, has been used for the treatment of Alzheimer's disease with an excellent clinical safety profile. We previously showed that memantine preferentially blocked neurotoxicity mediated by excessive NMDAR activity while relatively sparing normal neurotransmission, in part because of its uncompetitive antagonism with a fast off-rate. Here, using rat autaptic hippocampal microcultures, we show that memantine at therapeutic concentrations (1-10 microM) preferentially blocks extrasynaptic rather than synaptic currents mediated by NMDARs in the same neuron. We found that memantine blocks extrasynaptic NMDAR-mediated currents induced by bath application of 100 microM NMDA/10 microM glycine with a twofold higher potency than its blockade of the NMDAR component of evoked EPSCs (EPSCs(NMDAR)); this effect persists under conditions of pathological depolarization in the presence of 1 mm extracellular Mg(2+). Thus, our findings provide the first unequivocal evidence to explain the tolerability of memantine based on differential extrasynaptic/synaptic receptor blockade. At therapeutic concentrations, memantine effectively blocks excessive extrasynaptic NMDAR-mediated currents, while relatively sparing normal synaptic activity.
منابع مشابه
Synapses, NMDA receptor activity and neuronal Aβ production in Alzheimer's disease.
A direct relationship has been established between synaptic activity and amyloid-β secretion. Dysregulation of neuronal calcium homeostasis was shown to increase production of amyloid-β, contributing to the initiation of Alzheimer's disease. Among the different routes of Ca(2+) entry, N-methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are especially involved in ...
متن کاملSynaptic NMDA receptors mediate hypoxic excitotoxic death.
Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotroph...
متن کاملIn developing hippocampal neurons, NR2B-containing NMDA receptors can mediate signalling to neuronal survival and synaptic potentiation, as well as neuronal death
It has been suggested that NR2B-containing NMDA receptors have a selective tendency to promote pro-death signalling and synaptic depression, compared to the survival promoting, synapse potentiating properties of NR2A-containing NMDA receptors. A preferential localization of NR2A-containing NMDA receptors at the synapse in maturing neurons could thus explain differences in synaptic vs. extrasyna...
متن کاملExtrasynaptic glutamate NMDA receptors: Key players in striatal function
N-methyl-D-aspartate receptors (NMDAR) are crucial for the function of excitatory neurotransmission and are present at the synapse and on the extrasynaptic membrane. The major nucleus of the basal ganglia, striatum, receives a large glutamatergic excitatory input carrying information about movements and associated sensory stimulation for its proper function. Such bombardment of glutamate synapt...
متن کاملNeuronal Synchrony Mediated by Astrocytic Glutamate through Activation of Extrasynaptic NMDA Receptors
Fast excitatory neurotransmission is mediated by activation of synaptic ionotropic glutamate receptors. In hippocampal slices, we report that stimulation of Schaffer collaterals evokes in CA1 neurons delayed inward currents with slow kinetics, in addition to fast excitatory postsynaptic currents. Similar slow events also occur spontaneously, can still be observed when neuronal activity and syna...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 33 شماره
صفحات -
تاریخ انتشار 2010